metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.150D10, C10.282- (1+4), C10.1322+ (1+4), (C4×D20)⋊47C2, C42.C2⋊6D5, C4⋊C4.207D10, C42⋊2D5⋊9C2, D20⋊8C4⋊36C2, D10⋊2Q8⋊37C2, D10⋊Q8⋊35C2, C4⋊2D20.13C2, D10.17(C4○D4), (C2×C10).236C24, (C4×C20).196C22, (C2×C20).188C23, D10.13D4⋊34C2, C2.57(D4⋊8D10), Dic5.Q8⋊33C2, (C2×D20).170C22, C4⋊Dic5.314C22, C22.257(C23×D5), D10⋊C4.10C22, C5⋊8(C22.33C24), (C4×Dic5).151C22, (C2×Dic5).268C23, C10.D4.52C22, (C22×D5).102C23, C2.29(Q8.10D10), (C2×Dic10).186C22, (D5×C4⋊C4)⋊36C2, C2.87(D5×C4○D4), C4⋊C4⋊D5⋊34C2, (C5×C42.C2)⋊9C2, C10.198(C2×C4○D4), (C2×C4×D5).135C22, (C2×C4).80(C22×D5), (C5×C4⋊C4).191C22, SmallGroup(320,1364)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 830 in 218 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×4], C4 [×12], C22, C22 [×10], C5, C2×C4 [×7], C2×C4 [×11], D4 [×5], Q8, C23 [×3], D5 [×4], C10 [×3], C42, C42, C22⋊C4 [×10], C4⋊C4 [×6], C4⋊C4 [×8], C22×C4 [×5], C2×D4 [×3], C2×Q8, Dic5 [×5], C20 [×7], D10 [×2], D10 [×8], C2×C10, C2×C4⋊C4, C4×D4 [×2], C4⋊D4, C22⋊Q8 [×3], C22.D4 [×4], C42.C2, C42.C2, C42⋊2C2 [×2], Dic10, C4×D5 [×6], D20 [×5], C2×Dic5 [×5], C2×C20 [×7], C22×D5 [×3], C22.33C24, C4×Dic5, C10.D4 [×6], C4⋊Dic5 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×6], C2×Dic10, C2×C4×D5 [×5], C2×D20 [×3], C4×D20, C42⋊2D5, Dic5.Q8, D5×C4⋊C4, D20⋊8C4, D10.13D4 [×4], C4⋊2D20, D10⋊Q8 [×2], D10⋊2Q8, C4⋊C4⋊D5, C5×C42.C2, C42.150D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.33C24, C23×D5, Q8.10D10, D5×C4○D4, D4⋊8D10, C42.150D10
Generators and relations
G = < a,b,c,d | a4=b4=1, c10=d2=a2b2, ab=ba, cac-1=dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >
(1 67 136 28)(2 78 137 39)(3 69 138 30)(4 80 139 21)(5 71 140 32)(6 62 121 23)(7 73 122 34)(8 64 123 25)(9 75 124 36)(10 66 125 27)(11 77 126 38)(12 68 127 29)(13 79 128 40)(14 70 129 31)(15 61 130 22)(16 72 131 33)(17 63 132 24)(18 74 133 35)(19 65 134 26)(20 76 135 37)(41 89 160 104)(42 100 141 115)(43 91 142 106)(44 82 143 117)(45 93 144 108)(46 84 145 119)(47 95 146 110)(48 86 147 101)(49 97 148 112)(50 88 149 103)(51 99 150 114)(52 90 151 105)(53 81 152 116)(54 92 153 107)(55 83 154 118)(56 94 155 109)(57 85 156 120)(58 96 157 111)(59 87 158 102)(60 98 159 113)
(1 100 126 105)(2 106 127 81)(3 82 128 107)(4 108 129 83)(5 84 130 109)(6 110 131 85)(7 86 132 111)(8 112 133 87)(9 88 134 113)(10 114 135 89)(11 90 136 115)(12 116 137 91)(13 92 138 117)(14 118 139 93)(15 94 140 119)(16 120 121 95)(17 96 122 101)(18 102 123 97)(19 98 124 103)(20 104 125 99)(21 144 70 55)(22 56 71 145)(23 146 72 57)(24 58 73 147)(25 148 74 59)(26 60 75 149)(27 150 76 41)(28 42 77 151)(29 152 78 43)(30 44 79 153)(31 154 80 45)(32 46 61 155)(33 156 62 47)(34 48 63 157)(35 158 64 49)(36 50 65 159)(37 160 66 51)(38 52 67 141)(39 142 68 53)(40 54 69 143)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 160 11 150)(2 149 12 159)(3 158 13 148)(4 147 14 157)(5 156 15 146)(6 145 16 155)(7 154 17 144)(8 143 18 153)(9 152 19 142)(10 141 20 151)(21 96 31 86)(22 85 32 95)(23 94 33 84)(24 83 34 93)(25 92 35 82)(26 81 36 91)(27 90 37 100)(28 99 38 89)(29 88 39 98)(30 97 40 87)(41 126 51 136)(42 135 52 125)(43 124 53 134)(44 133 54 123)(45 122 55 132)(46 131 56 121)(47 140 57 130)(48 129 58 139)(49 138 59 128)(50 127 60 137)(61 120 71 110)(62 109 72 119)(63 118 73 108)(64 107 74 117)(65 116 75 106)(66 105 76 115)(67 114 77 104)(68 103 78 113)(69 112 79 102)(70 101 80 111)
G:=sub<Sym(160)| (1,67,136,28)(2,78,137,39)(3,69,138,30)(4,80,139,21)(5,71,140,32)(6,62,121,23)(7,73,122,34)(8,64,123,25)(9,75,124,36)(10,66,125,27)(11,77,126,38)(12,68,127,29)(13,79,128,40)(14,70,129,31)(15,61,130,22)(16,72,131,33)(17,63,132,24)(18,74,133,35)(19,65,134,26)(20,76,135,37)(41,89,160,104)(42,100,141,115)(43,91,142,106)(44,82,143,117)(45,93,144,108)(46,84,145,119)(47,95,146,110)(48,86,147,101)(49,97,148,112)(50,88,149,103)(51,99,150,114)(52,90,151,105)(53,81,152,116)(54,92,153,107)(55,83,154,118)(56,94,155,109)(57,85,156,120)(58,96,157,111)(59,87,158,102)(60,98,159,113), (1,100,126,105)(2,106,127,81)(3,82,128,107)(4,108,129,83)(5,84,130,109)(6,110,131,85)(7,86,132,111)(8,112,133,87)(9,88,134,113)(10,114,135,89)(11,90,136,115)(12,116,137,91)(13,92,138,117)(14,118,139,93)(15,94,140,119)(16,120,121,95)(17,96,122,101)(18,102,123,97)(19,98,124,103)(20,104,125,99)(21,144,70,55)(22,56,71,145)(23,146,72,57)(24,58,73,147)(25,148,74,59)(26,60,75,149)(27,150,76,41)(28,42,77,151)(29,152,78,43)(30,44,79,153)(31,154,80,45)(32,46,61,155)(33,156,62,47)(34,48,63,157)(35,158,64,49)(36,50,65,159)(37,160,66,51)(38,52,67,141)(39,142,68,53)(40,54,69,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,11,150)(2,149,12,159)(3,158,13,148)(4,147,14,157)(5,156,15,146)(6,145,16,155)(7,154,17,144)(8,143,18,153)(9,152,19,142)(10,141,20,151)(21,96,31,86)(22,85,32,95)(23,94,33,84)(24,83,34,93)(25,92,35,82)(26,81,36,91)(27,90,37,100)(28,99,38,89)(29,88,39,98)(30,97,40,87)(41,126,51,136)(42,135,52,125)(43,124,53,134)(44,133,54,123)(45,122,55,132)(46,131,56,121)(47,140,57,130)(48,129,58,139)(49,138,59,128)(50,127,60,137)(61,120,71,110)(62,109,72,119)(63,118,73,108)(64,107,74,117)(65,116,75,106)(66,105,76,115)(67,114,77,104)(68,103,78,113)(69,112,79,102)(70,101,80,111)>;
G:=Group( (1,67,136,28)(2,78,137,39)(3,69,138,30)(4,80,139,21)(5,71,140,32)(6,62,121,23)(7,73,122,34)(8,64,123,25)(9,75,124,36)(10,66,125,27)(11,77,126,38)(12,68,127,29)(13,79,128,40)(14,70,129,31)(15,61,130,22)(16,72,131,33)(17,63,132,24)(18,74,133,35)(19,65,134,26)(20,76,135,37)(41,89,160,104)(42,100,141,115)(43,91,142,106)(44,82,143,117)(45,93,144,108)(46,84,145,119)(47,95,146,110)(48,86,147,101)(49,97,148,112)(50,88,149,103)(51,99,150,114)(52,90,151,105)(53,81,152,116)(54,92,153,107)(55,83,154,118)(56,94,155,109)(57,85,156,120)(58,96,157,111)(59,87,158,102)(60,98,159,113), (1,100,126,105)(2,106,127,81)(3,82,128,107)(4,108,129,83)(5,84,130,109)(6,110,131,85)(7,86,132,111)(8,112,133,87)(9,88,134,113)(10,114,135,89)(11,90,136,115)(12,116,137,91)(13,92,138,117)(14,118,139,93)(15,94,140,119)(16,120,121,95)(17,96,122,101)(18,102,123,97)(19,98,124,103)(20,104,125,99)(21,144,70,55)(22,56,71,145)(23,146,72,57)(24,58,73,147)(25,148,74,59)(26,60,75,149)(27,150,76,41)(28,42,77,151)(29,152,78,43)(30,44,79,153)(31,154,80,45)(32,46,61,155)(33,156,62,47)(34,48,63,157)(35,158,64,49)(36,50,65,159)(37,160,66,51)(38,52,67,141)(39,142,68,53)(40,54,69,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,11,150)(2,149,12,159)(3,158,13,148)(4,147,14,157)(5,156,15,146)(6,145,16,155)(7,154,17,144)(8,143,18,153)(9,152,19,142)(10,141,20,151)(21,96,31,86)(22,85,32,95)(23,94,33,84)(24,83,34,93)(25,92,35,82)(26,81,36,91)(27,90,37,100)(28,99,38,89)(29,88,39,98)(30,97,40,87)(41,126,51,136)(42,135,52,125)(43,124,53,134)(44,133,54,123)(45,122,55,132)(46,131,56,121)(47,140,57,130)(48,129,58,139)(49,138,59,128)(50,127,60,137)(61,120,71,110)(62,109,72,119)(63,118,73,108)(64,107,74,117)(65,116,75,106)(66,105,76,115)(67,114,77,104)(68,103,78,113)(69,112,79,102)(70,101,80,111) );
G=PermutationGroup([(1,67,136,28),(2,78,137,39),(3,69,138,30),(4,80,139,21),(5,71,140,32),(6,62,121,23),(7,73,122,34),(8,64,123,25),(9,75,124,36),(10,66,125,27),(11,77,126,38),(12,68,127,29),(13,79,128,40),(14,70,129,31),(15,61,130,22),(16,72,131,33),(17,63,132,24),(18,74,133,35),(19,65,134,26),(20,76,135,37),(41,89,160,104),(42,100,141,115),(43,91,142,106),(44,82,143,117),(45,93,144,108),(46,84,145,119),(47,95,146,110),(48,86,147,101),(49,97,148,112),(50,88,149,103),(51,99,150,114),(52,90,151,105),(53,81,152,116),(54,92,153,107),(55,83,154,118),(56,94,155,109),(57,85,156,120),(58,96,157,111),(59,87,158,102),(60,98,159,113)], [(1,100,126,105),(2,106,127,81),(3,82,128,107),(4,108,129,83),(5,84,130,109),(6,110,131,85),(7,86,132,111),(8,112,133,87),(9,88,134,113),(10,114,135,89),(11,90,136,115),(12,116,137,91),(13,92,138,117),(14,118,139,93),(15,94,140,119),(16,120,121,95),(17,96,122,101),(18,102,123,97),(19,98,124,103),(20,104,125,99),(21,144,70,55),(22,56,71,145),(23,146,72,57),(24,58,73,147),(25,148,74,59),(26,60,75,149),(27,150,76,41),(28,42,77,151),(29,152,78,43),(30,44,79,153),(31,154,80,45),(32,46,61,155),(33,156,62,47),(34,48,63,157),(35,158,64,49),(36,50,65,159),(37,160,66,51),(38,52,67,141),(39,142,68,53),(40,54,69,143)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,160,11,150),(2,149,12,159),(3,158,13,148),(4,147,14,157),(5,156,15,146),(6,145,16,155),(7,154,17,144),(8,143,18,153),(9,152,19,142),(10,141,20,151),(21,96,31,86),(22,85,32,95),(23,94,33,84),(24,83,34,93),(25,92,35,82),(26,81,36,91),(27,90,37,100),(28,99,38,89),(29,88,39,98),(30,97,40,87),(41,126,51,136),(42,135,52,125),(43,124,53,134),(44,133,54,123),(45,122,55,132),(46,131,56,121),(47,140,57,130),(48,129,58,139),(49,138,59,128),(50,127,60,137),(61,120,71,110),(62,109,72,119),(63,118,73,108),(64,107,74,117),(65,116,75,106),(66,105,76,115),(67,114,77,104),(68,103,78,113),(69,112,79,102),(70,101,80,111)])
Matrix representation ►G ⊆ GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 18 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 23 | 9 | 2 |
0 | 0 | 0 | 0 | 0 | 39 | 0 | 32 |
1 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 37 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 9 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
34 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 37 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 18 | 32 | 39 |
0 | 0 | 0 | 0 | 0 | 9 | 32 | 40 |
0 | 0 | 0 | 0 | 9 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 39 | 1 | 32 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,18,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,9,37,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,18,9,23,39,0,0,0,0,0,0,9,0,0,0,0,0,0,0,2,32],[1,7,0,0,0,0,0,0,34,34,0,0,0,0,0,0,0,0,31,35,0,0,0,0,0,0,37,10,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,18,0,0,0,0,1,0,0,0,0,0,0,0,0,9,0,40],[40,34,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,31,35,0,0,0,0,0,0,37,10,0,0,0,0,0,0,0,0,0,0,9,1,0,0,0,0,18,9,23,39,0,0,0,0,32,32,0,1,0,0,0,0,39,40,0,32] >;
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 20 | 20 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | 2+ (1+4) | 2- (1+4) | Q8.10D10 | D5×C4○D4 | D4⋊8D10 |
kernel | C42.150D10 | C4×D20 | C42⋊2D5 | Dic5.Q8 | D5×C4⋊C4 | D20⋊8C4 | D10.13D4 | C4⋊2D20 | D10⋊Q8 | D10⋊2Q8 | C4⋊C4⋊D5 | C5×C42.C2 | C42.C2 | D10 | C42 | C4⋊C4 | C10 | C10 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 12 | 1 | 1 | 4 | 4 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{150}D_{10}
% in TeX
G:=Group("C4^2.150D10");
// GroupNames label
G:=SmallGroup(320,1364);
// by ID
G=gap.SmallGroup(320,1364);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,675,570,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations